Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene
Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).
Article ADS CAS Google Scholar
Fox-Kemper, B. et al. Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge University Press, 2021).
Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).
Article ADS CAS PubMed Google Scholar
Bradley, S. L., Hindmarsh, R. C., Whitehouse, P. L., Bentley, M. J. & King, M. A. Low post-glacial rebound rates in the Weddell sea due to late Holocene ice-sheet readvance. Earth Planet. Sci. Lett. 413, 79–89 (2015).
Article ADS CAS Google Scholar
Johnson, J. S. et al. Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica. Cryosphere 16, 1543–1562 (2022).
Article ADS Google Scholar
Jones, R. S. et al. Stability of the Antarctic ice sheet during the pre-industrial Holocene. Nat. Rev. Earth Environ. 3, 500–515 (2022).
Article ADS Google Scholar
Balco, G. et al. Reversible ice sheet thinning in the Amundsen sea embayment during the late Holocene. Cryosphere 17, 1787–1801 (2023).
Article ADS Google Scholar
Venturelli, R. et al. Mid-Holocene grounding line retreat and readvance at Whillans ice stream, west Antarctica. Geophys. Res. Lett. 47, e2020GL088476 (2020).
Article ADS Google Scholar
Venturelli, R. A. et al. Constraints on the timing and extent of deglacial grounding line retreat in west Antarctica. AGU Adv. 4, e2022AV000846 (2023).
Article ADS Google Scholar
Neuhaus, S. U. et al. Did Holocene climate changes drive West Antarctic grounding line retreat and readvance? Cryosphere 15, 4655–4673 (2021).
Article ADS Google Scholar
Kingslake, J. et al. Extensive retreat and re-advance of the west antarctic ice sheet during the Holocene. Nature 558, 430–434 (2018).
Article ADS CAS PubMed Google Scholar
Pittard, M. L., Whitehouse, P. L., Bentley, M. J. & Small, D. An ensemble of antarctic deglacial simulations constrained by geological observations. Quat. Sci. Rev. 298, 107800 (2022).
Article Google Scholar
Lowry, D. P., Golledge, N. R., Bertler, N. A., Jones, R. S. & McKay, R. Deglacial grounding-line retreat in the Ross embayment, Antarctica, controlled by ocean and atmosphere forcing. Sci. Adv. 5, eaav8754 (2019).
Article ADS PubMed PubMed Central Google Scholar
Joughin, I. & Tulaczyk, S. Positive mass balance of the Ross ice streams, west Antarctica. Science 295, 476–480 (2002).
Article ADS CAS PubMed Google Scholar
Rignot, E. et al. Four decades of antarctic ice sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 116, 1095–1103 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
Seroussi, H. et al. Insights into the vulnerability of antarctic glaciers from the ismip6 ice sheet model ensemble and associated uncertainty. Cryosphere 17, 5197–5217 (2023).
Article ADS Google Scholar
Stevens, C. et al. Ocean mixing and heat transport processes observed under the Ross ice shelf control its basal melting. Proc. Natl. Acad. Sci. USA 117, 16799–16804 (2020).
Article ADS CAS PubMed PubMed Central Google Scholar
Jendersie, S., Williams, M. J., Langhorne, P. J. & Robertson, R. The density-driven winter intensification of the Ross sea circulation. J. Geophys. Res. Oceans 123, 7702–7724 (2018).
Article ADS Google Scholar
Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).
Article ADS CAS PubMed Google Scholar
Tinto, K. et al. Ross ice shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nat. Geosci. 12, 441–449 (2019).
Article ADS CAS Google Scholar
Mezgec, K. et al. Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea. Nat. Commun. 8, 1334 (2017).
Article ADS CAS PubMed PubMed Central Google Scholar
Ashley, K. E. et al. Mid-holocene antarctic sea-ice increase driven by marine ice sheet retreat. Climate 17, 1–19 (2021).
Google Scholar
Barletta, V. R. et al. Observed rapid bedrock uplift in Amundsen sea embayment promotes ice-sheet stability. Science 360, 1335–1339 (2018).
Article ADS CAS PubMed Google Scholar
Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid earth change and the evolution of the Antarctic ice sheet. Nat. Commun. 10, 503 (2019).
Article ADS CAS PubMed PubMed Central Google Scholar
Ivins, E., van der Wal, W., Wiens, D., Lloyd, A. & Caron, L. Antarctic upper mantle rheology. Geol. Soc. Lond. Mem. 56, M56–2020 (2022).
Google Scholar
Kendall, R. A., Mitrovica, J. X. & Milne, G. A. On post-glacial sea level–ii. numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005).
Article ADS Google Scholar
Han, H. K., Gomez, N. & Wan, J. X. W. Capturing the interactions between ice sheets, sea level and the solid earth on a range of timescales: a new “time window” algorithm. Geosci. Model Dev. 15, 1355–1373 (2022).
Article ADS Google Scholar
Bueler, E. & Brown, J. Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model. J. Geophys. Res. Earth Surf. 114, F03008 (2009).
Martin, M. A. et al. The Potsdam parallel ice sheet model (pism-pik)—Part 2: dynamic equilibrium simulation of the Antarctic ice sheet. Cryosphere 5, 727–740 (2011).
Golledge, N. R. et al. Retreat of the antarctic ice sheet during the last interglaciation and implications for future change. Geophys. Res. Lett. 48, e2021GL094513 (2021).
Article ADS Google Scholar
Gomez, N., Latychev, K. & Pollard, D. A coupled ice sheet–sea level model incorporating 3d earth structure: variations in Antarctica during the last deglacial retreat. J. Clim. 31, 4041–4054 (2018).
Article ADS Google Scholar
Lingle, C. S. & Clark, J. A. A numerical model of interactions between a marine ice sheet and the solid earth: application to a west antarctic ice stream. J. Geophys. Res. Oceans 90, 1100–1114 (1985).
Article ADS Google Scholar
Bueler, E., Lingle, C. S. & Brown, J. Fast computation of a viscoelastic deformable earth model for ice-sheet simulations. Ann. Glaciol. 46, 97–105 (2007).
Article ADS Google Scholar
Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the antarctic ice sheet with the parallel ice sheet model (pism)–part 1: boundary conditions and climatic forcing. Cryosphere 14, 599–632 (2020).
Article ADS Google Scholar
Fudge, T. J. et al. Variable relationship between accumulation and temperature in west Antarctica for the past 31,000 years. Geophys. Res. Lett. 43, 3795–3803 (2016).
Article ADS Google Scholar
Van Wessem, J. et al. Improved representation of east antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol. 60, 761–770 (2014).
Article Google Scholar
Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for bølling-allerød warming. Science 325, 310–314 (2009).
Article ADS CAS PubMed Google Scholar
He, F. et al. Northern hemisphere forcing of southern hemisphere climate during the last deglaciation. Nature 494, 81–85 (2013).
Article ADS CAS PubMed Google Scholar
Pollard, D. & DeConto, R. M. Modelling west antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009).
Article ADS CAS PubMed Google Scholar
Clark, P. U. et al. Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature 577, 660–664 (2020).
Article ADS CAS PubMed Google Scholar
Lowry, D. P., Golledge, N. R., Menviel, L. & Bertler, N. A. Deglacial evolution of regional antarctic climate and southern ocean conditions in transient climate simulations. Climate 15, 189–215 (2019).
Google Scholar
He, F. & Clark, P. U. Freshwater forcing of the atlantic meridional overturning circulation revisited. Nat. Clim. Change 12, 449–454 (2022).
Article ADS Google Scholar
Todd, C., Stone, J., Conway, H., Hall, B. & Bromley, G. Late quaternary evolution of reedy glacier, Antarctica. Quat. Sci. Rev. 29, 1328–1341 (2010).
Article ADS Google Scholar
Spector, P. et al. Rapid early-Holocene deglaciation in the Ross Sea, Antarctica. Geophys. Res. Lett. 44, 7817–7825 (2017).
Article ADS Google Scholar
Hillebrand, T. R. et al. Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea. Cryosphere 15, 3329–3354 (2021).
Article ADS Google Scholar
Stutz, J. et al. Inland thinning of Byrd glacier, Antarctica, during Ross ice shelf formation. Earth Surf. Process. Landf. 48, 3363–3380 (2023).
Xu, Q., Yang, L., Gao, Y., Sun, L. & Xie, Z. 6,000-year reconstruction of modified circumpolar deep water intrusion and its effects on sea ice and penguin in the Ross Sea. Geophys. Res. Lett. 48, e2021GL094545 (2021).
Article ADS Google Scholar
Gomez, N., Mitrovica, J. X., Huybers, P. & Clark, P. U. Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nat. Geosci. 3, 850–853 (2010).
Article ADS CAS Google Scholar
Larour, E. et al. Slowdown in antarctic mass loss from solid earth and sea-level feedbacks. Science 364, eaav7908 (2019).
Article ADS CAS PubMed Google Scholar
Gomez, N., Pollard, D. & Mitrovica, J. X. A 3-d coupled ice sheet–sea level model applied to Antarctica through the last 40 ky. Earth Planet. Sci. Lett. 384, 88–99 (2013).
Article ADS CAS Google Scholar
Gomez, N., Weber, M. E., Clark, P. U., Mitrovica, J. X. & Han, H. K. Antarctic ice dynamics amplified by northern hemisphere sea-level forcing. Nature 587, 600–604 (2020).
Article ADS CAS PubMed Google Scholar
Hall, B. L. & Denton, G. H. New relative sea-level curves for the southern Scott coast, Antarctica: evidence for Holocene deglaciation of the western Ross Sea. J. Quat. Sci. 14, 641–650 (1999).
Article Google Scholar
Baroni, C. & Hall, B. L. A new Holocene relative sea-level curve for Terra Nova Bay, Victoria land, Antarctica. J. Quat. Sci. 19, 377–396 (2004).
Article Google Scholar
Briggs, R. D. & Tarasov, L. How to evaluate model-derived deglaciation chronologies: a case study using Antarctica. Quat. Sci. Rev. 63, 109–127 (2013).
Article ADS Google Scholar
Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).
Article ADS CAS PubMed Google Scholar
Hamilton, G. S. Mass balance and accumulation rate across siple dome, west Antarctica. Ann. Glaciol. 35, 102–106 (2002).
Article ADS Google Scholar
Bodart, J. A. et al. High mid-holocene accumulation rates over west Antarctica inferred from a pervasive ice-penetrating radar reflector. Cryosphere 17, 1497–1512 (2023).
Article ADS Google Scholar
Steig, E. J. et al. Changes in climate, ocean and ice-sheet conditions in the Ross embayment, Antarctica, at 6 ka. Ann. Glaciol. 27, 305–310 (1998).
Article ADS CAS Google Scholar
Hall, B. L. et al. Widespread southern elephant seal occupation of the Victoria land coast implies a warmer-than-present Ross Sea in the mid-to-late Holocene. Quat. Sci. Rev. 303, 107991 (2023).
Article Google Scholar
Jones, T. R. et al. Seasonal temperatures in west Antarctica during the Holocene. Nature 613, 292–297 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Hazel, J. E. & Stewart, A. L. Bistability of the Filchner-ronne ice shelf cavity circulation and basal melt. J. Geophys. Res. Oceans 125, e2019JC015848 (2020).
Article ADS Google Scholar
Hellmer, H. H., Kauker, F., Timmermann, R. & Hattermann, T. The fate of the southern Weddell sea continental shelf in a warming climate. J. Clim. 30, 4337–4350 (2017).
Article ADS Google Scholar
Daae, K. et al. Necessary conditions for warm inflow toward the Filchner ice shelf, Weddell sea. Geophys. Res. Lett. 47, e2020GL089237 (2020).
Article ADS Google Scholar
Siahaan, A. et al. The antarctic contribution to 21st-century sea-level rise predicted by the UK earth system model with an interactive ice sheet. Cryosphere 16, 4053–4086 (2022).
Article ADS Google Scholar
Melis, R. et al. Last glacial maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett ridge. J. Micropalaeontol. 40, 15–35 (2021).
Article ADS Google Scholar
Piccione, G. et al. Subglacial precipitates record antarctic ice sheet response to late Pleistocene millennial climate cycles. Nat. Commun. 13, 5428 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Johnson, K. M. et al. Sensitivity of Holocene east antarctic productivity to subdecadal variability set by sea ice. Nat. Geosci. 14, 762–768 (2021).
Article ADS CAS Google Scholar
Crosta, X. et al. Antarctic sea ice over the past 130 000 years–part 1: a review of what proxy records tell us. Climate 18, 1729–1756 (2022).
Google Scholar
Ji, F. et al. Variations of the effective elastic thickness over the Ross Sea and Transantarctic mountains and implications for their structure and tectonics. Tectonophysics 717, 127–138 (2017).
Article ADS Google Scholar
Chen, B., Haeger, C., Kaban, M. K. & Petrunin, A. G. Variations of the effective elastic thickness reveal tectonic fragmentation of the antarctic lithosphere. Tectonophysics 746, 412–424 (2018).
Article ADS Google Scholar
Tankersley, M. D., Horgan, H. J., Siddoway, C. S., Caratori Tontini, F. & Tinto, K. J. Basement topography and sediment thickness beneath Antarctica’s Ross ice shelf. Geophys. Res. Lett. 49, e2021GL097371 (2022).
Article ADS Google Scholar
Lee, S.-K. et al. Human-induced changes in the global meridional overturning circulation are emerging from the southern ocean. Commun. Earth Environ. 4, 69 (2023).
Article ADS Google Scholar
Roach, L. A. et al. Antarctic sea ice area in cmip6. Geophys. Res. Lett. 47, e2019GL086729 (2020).
Article ADS Google Scholar
Feldmann, J., Albrecht, T., Khroulev, C., Pattyn, F. & Levermann, A. Resolution-dependent performance of grounding line motion in a shallow model compared with a full-stokes model according to the mismip3d intercomparison. J. Glaciol. 60, 353–360 (2014).
Article ADS Google Scholar
Levermann, A. et al. Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. Cryosphere 6, 273–286 (2012).
Article ADS Google Scholar
Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).
Fudge, T. J. et al. Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years. Geophys. Res. Lett. 43, 3795–3803 (2016).
Hellmer, H. H. & Olbers, D. J. A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci. 1, 325–336 (1989).
Article ADS Google Scholar
Bernales, J., Rogozhina, I. & Thomas, M. Melting and freezing under antarctic ice shelves from a combination of ice-sheet modelling and observations. J. Glaciol. 63, 731–744 (2017).
Article ADS Google Scholar
Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).
Article ADS CAS PubMed Google Scholar
Imbrie, J. D. & McIntyre, A. Specmap time scale developed by Imbrie et al. 1984 based on normalized planktonic records (normalized O-18 vs time, specmap. 017) [dataset]. PANGAEA. https://doi.org/10.1594/PANGAEA.441706 (2006).
Clark, P. U. & Huybers, P. Interglacial and future sea level. Nature 462, 856–857 (2009).
Article ADS CAS PubMed Google Scholar
Stanford, J. D. et al. Sea-level probability for the last deglaciation: a statistical analysis of far-field records. Glob. Planet. Change 79, 193–203 (2011).
Article ADS Google Scholar
Deschamps, P. et al. Ice-sheet collapse and sea-level rise at the bølling warming 14,600 years ago. Nature 483, 559–564 (2012).
Article ADS CAS PubMed Google Scholar
Lowry, D. P. et al. Geologic controls on ice sheet sensitivity to deglacial climate forcing in the Ross Embayment, Antarctica. Quat. Sci. Adv. 1, 100002 (2020).
Article Google Scholar
Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the antarctic ice sheet with the parallel ice sheet model (pism)–part 2: parameter ensemble analysis. Cryosphere 14, 633–656 (2020).
Gomez, N., Mitrovica, J. X., Tamisiea, M. E. & Clark, P. U. A new projection of sea level change in response to collapse of marine sectors of the Antarctic ice sheet. Geophys. J. Int. 180, 623–634 (2010).
Article ADS Google Scholar
Dziewonski, A. M. & Anderson, D. L. Preliminary reference earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).
Article ADS Google Scholar
Peltier, W. R. Global glacial isostasy and the surface of the ice-age earth: the ice-5g (vm2) model and grace. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).
Article ADS CAS Google Scholar
Baggenstos, D. et al. A horizontal ice core from Taylor glacier, its implications for antarctic climate history, and an improved Taylor dome ice core time scale. Paleoceanogr. Paleoclimatol. 33, 778–794 (2018).
Article ADS Google Scholar