Hot topics close

Role of non-coding RNA in lineage plasticity of prostate cancer

Role of noncoding RNA in lineage plasticity of prostate cancer
Cancer Gene Therapy - Role of non-coding RNA in lineage plasticity of prostate cancer
  • Chen R, Dong X, Gleave M. Molecular model for neuroendocrine prostate cancer progression. BJU Int. 2018;122:560–70.

    Article  PubMed  Google Scholar 

  • Crawford ED, Stanton W, Mandair D. Darolutamide: an evidenced-based review of its efficacy and safety in the treatment of prostate cancer. Cancer Manag Res. 2020;12:5667–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhou Q, Hankey W, Fang X, Yuan F. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis. 2022;13:632.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parimi V, Goyal R, Poropatich K, Yang XJ. Neuroendocrine differentiation of prostate cancer: a review. Am J Clin Exp Urol. 2014;2:273–85.

    PubMed  PubMed Central  Google Scholar 

  • Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298–305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang HT, Yao YH, Li BG, Tang Y, Chang JW, Zhang J. Neuroendocrine Prostate Cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis—a systematic review and pooled analysis. J Clin Oncol. 2014;32:3383–90.

    Article  PubMed  Google Scholar 

  • Beltran H, Hruszkewycz A, Scher HI, Hildesheim J, Isaacs J, Yu EY, et al. The role of lineage plasticity in prostate cancer therapy resistance. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25:6916–24.

    Article  Google Scholar 

  • Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol. 2018;15:271–86.

    Article  PubMed  Google Scholar 

  • Wang Y, Wang Y, Ci X, Choi SYC, Crea F, Lin D, et al. Molecular events in neuroendocrine prostate cancer development. Nat Rev Urol. 2021;18:581–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang X, Lin A, Wang Q, Zhang J, Luo P. Cell plasticity in patients with NSCLC: the controversial origins of transformed SCLC. Biomed Pharmacother. 2022;149:112909.

    Article  PubMed  Google Scholar 

  • Conteduca V, Oromendia C, Eng KW, Bareja R, Sigouros M, Molina A, et al. Clinical features of neuroendocrine prostate cancer. Eur J Cancer. 2019;121:7–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Beltran H. Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep. 2021;23:15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sreekumar A, Saini S. Role of microRNAs in neuroendocrine prostate cancer. Noncoding RNA. 2022;8:25.

    PubMed  PubMed Central  Google Scholar 

  • Beltran H, Demichelis F. Therapy considerations in neuroendocrine prostate cancer: what next? Endocr Relat Cancer. 2021;28:T67–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Liu KY, Liu Q, Cao Q. Androgen receptor-related non-coding RNAs in prostate cancer. Front Cell Dev Biol. 2021;9:660853.

    Article  PubMed  PubMed Central  Google Scholar 

  • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74.

    Article  PubMed  Google Scholar 

  • Altschuler J, Stockert JA, Kyprianou N. Non-coding RNAs set a new phenotypic frontier in prostate cancer metastasis and resistance. Int J Mol Sci. 2021;22:2100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.

    Article  PubMed  Google Scholar 

  • Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15:321–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie. 2019;167:12–24.

    Article  PubMed  Google Scholar 

  • Jafarzadeh A, Paknahad MH, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Rajabi A, et al. Dysregulated expression and functions of microRNA-330 in cancers: a potential therapeutic target. Biomed Pharmacother. 2022;146:112600.

    Article  PubMed  Google Scholar 

  • Aghdam SG, Ebrazeh M, Hemmatzadeh M, Seyfizadeh N, Shabgah AG, Azizi G, et al. The role of microRNAs in prostate cancer migration, invasion, and metastasis. J Cell Physiol. 2019;234:9927–42.

    Article  PubMed  Google Scholar 

  • Nadiminty N, Tummala R, Lou W, Zhu Y, Zhang J, Chen X, et al. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem. 2012;287:1527–37.

    Article  PubMed  Google Scholar 

  • Fernandes RC, Toubia J, Townley S, Hanson AR, Dredge BK, Pillman KA, et al. Post-transcriptional gene regulation by microRNA-194 promotes neuroendocrine transdifferentiation in prostate cancer. Cell Rep. 2021;34:108585.

    Article  PubMed  Google Scholar 

  • Ding M, Lin B, Li T, Liu Y, Li Y, Zhou X, et al. A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells. Oncotarget. 2015;6:7686–700.

    Article  PubMed  PubMed Central  Google Scholar 

  • Natani S, Ramakrishna M, Nallavolu T, Ummanni R. MicroRNA-147b induces neuroendocrine differentiation of prostate cancer cells by targeting ribosomal protein RPS15A. Prostate. 2023;83:936–49.

    Article  PubMed  Google Scholar 

  • Naidoo M, Levine F, Gillot T, Orunmuyi AT, Olapade-Olaopa EO, Ali T, et al. MicroRNA-1205 regulation of FRYL in prostate cancer. Front Cell Dev Biol. 2021;9:647485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma S, Chan YP, Kwan PS, Lee TK, Yan M, Tang KH, et al. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Res. 2011;71:583–92.

    PubMed  Google Scholar 

  • Yu J, Lu Y, Cui D, Li E, Zhu Y, Zhao Y, et al. miR-200b suppresses cell proliferation, migration and enhances chemosensitivity in prostate cancer by regulating Bmi-1. Oncol Rep. 2014;31:910–8.

    Article  PubMed  Google Scholar 

  • Urabe F, Yamamoto Y, Kimura T. miRNAs in prostate cancer: intercellular and extracellular communications. Int J Urol. 2022;29:1429–38.

    Article  PubMed  Google Scholar 

  • Guan H, Peng R, Fang F, Mao L, Chen Z, Yang S, et al. Tumor-associated macrophages promote prostate cancer progression via exosome-mediated miR-95 transfer. J Cell Physiol. 2020;235:9729–42.

    Article  PubMed  Google Scholar 

  • Patel GK, Dutta S, Syed MM, Ramachandran S, Sharma M, Rajamanickam V, et al. TBX2 drives neuroendocrine prostate cancer through exosome-mediated repression of miR-200c-3p. Cancers. 2021;13:5020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhagirath D, Liston M, Patel N, Akoto T, Lui B, Yang TL, et al. MicroRNA determinants of neuroendocrine differentiation in metastatic castration-resistant prostate cancer. Oncogene. 2020;39:7209–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nabavi N, Saidy NRN, Venalainen E, Haegert A, Parolia A, Xue H, et al. miR-100-5p inhibition induces apoptosis in dormant prostate cancer cells and prevents the emergence of castration-resistant prostate cancer. Sci Rep. 2017;7:4079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 2010;18:181–7.

    Article  PubMed  Google Scholar 

  • Xu YH, Deng JL, Wang G, Zhu YS. Long non-coding RNAs in prostate cancer: functional roles and clinical implications. Cancer Lett. 2019;464:37–55.

    Article  PubMed  Google Scholar 

  • Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77:3965–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Misawa A, Takayama KI, Inoue S. Long non-coding RNAs and prostate cancer. Cancer Sci. 2017;108:2107–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, et al. Molecular landscape of LncRNAs in prostate cancer: a focus on pathways and therapeutic targets for intervention. J Exp Clin Cancer Res. 2022;41:214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smolarz B, Zadrożna-Nowak A, Romanowicz H. The role of lncRNA in the development of tumors, including breast cancer. Int J Mol Sci. 2021;22:8427.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteom Bioinforma. 2016;14:42–54.

    Article  Google Scholar 

  • Liu B, Jiang HY, Yuan T, Luo J, Zhou WD, Jiang QQ, et al. Enzalutamide-induced upregulation of PCAT6 promotes prostate cancer neuroendocrine differentiation by regulating miR-326/HNRNPA2B1 axis. Front Oncol. 2021;11:650054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh N, Ramnarine VR, Song JH, Pandey R, Padi SKR, Nouri M, et al. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nat Commun. 2021;12:7349.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghildiyal R, Sawant M, Renganathan A, Mahajan K, Kim EH, Luo J, et al. Loss of long noncoding RNA NXTAR in prostate cancer augments androgen receptor expression and enzalutamide resistance. Cancer Res. 2022;82:155–68.

    Article  PubMed  Google Scholar 

  • Luo J, Wang K, Yeh S, Sun Y, Liang L, Xiao Y, et al. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat Commun. 2019;10:2571.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Zhang M, Shen C, Liu G, Zhang F, Hou J, et al. LncRNA PCBP1-AS1-mediated AR/AR-V7 deubiquitination enhances prostate cancer enzalutamide resistance. Cell Death Dis. 2021;12:856.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Jiang HY, Yuan T, Zhou WD, Xiang ZD, Jiang QQ, et al. Long non-coding RNA AFAP1-AS1 facilitates prostate cancer progression by regulating miR-15b/IGF1R axis. Curr Pharm Des. 2021;27:4261–69.

    Article  PubMed  Google Scholar 

  • Jiang X, Guo S, Xu M, Ma B, Liu R, Xu Y, et al. TFAP2C-mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel-resistant prostate cancer through c-Myc/miR-25-3p/SLC7A11 signaling. Front Oncol. 2022;12:862015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mather RL, Parolia A, Carson SE, Venalainen E, Roig-Carles D, Jaber M, et al. The evolutionarily conserved long non-coding RNA LINC00261 drives neuroendocrine prostate cancer proliferation and metastasis via distinct nuclear and cytoplasmic mechanisms. Mol Oncol. 2021;15:1921–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Fang C, Li H, Lu C, Huang J, Pan J, et al. Long ncRNA MALAT1 promotes cell proliferation, migration, and invasion in prostate cancer via sponging miR-145. Transl Androl Urol. 2021;10:2307–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ZH, Wang JH, Wang KQ, Zhou Y, Wang J. LncRNA FEZF1-AS1 promoted chemoresistance, autophagy and epithelial-mesenchymal transition (EMT) through regulation of miR-25-3p/ITGB8 axis in prostate cancer. Eur Rev Med Pharmacol Sci. 2020;24:2281–93.

    PubMed  Google Scholar 

  • Ye C, Chen YG, Qin SF, Tang SY, Li S, Shi MF, et al. Enzalutamide-resistant related lncRNA NONHSAT210528 promotes the proliferation and invasion of prostate cancer. Transl Androl Urol. 2022;11:643–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280:339–40.

    Article  PubMed  Google Scholar 

  • Lei M, Zheng G, Ning Q, Zheng J, Dong D. Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 2020;19:30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Zou X, Zou J, Zhang G. Functions of circular RNAs in bladder, prostate and renal cell cancer (Review). Mol Med Rep. 2021;23:307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, et al. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol Cancer. 2021;20:4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang ZH, Wang Y, Zhang Y, Zheng SF, Feng T, Tian X, et al. The function and mechanisms of action of circular RNAs in urologic cancer. Mol Cancer. 2023;22:61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao F, Wang S, Zhang C, Han D, Xu G, Chen G. The emerging role of circular RNAs in prostate cancer: a systematic review. Front Cell Dev Biol. 2021;9:681163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Wang M, Yang J. Circular RNA midline-1 (circMID1) promotes proliferation, migration, invasion and glycolysis in prostate cancer. Bioengineered. 2022;13:6293–308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Yang F, Fang E, Xiao W, Mei H, Li H, et al. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ. 2019;26:1346–64.

    Article  PubMed  Google Scholar 

  • Zhang Y, Liu F, Feng Y, Xu X, Wang Y, Zhu S, et al. CircRNA circ_0006156 inhibits the metastasis of prostate cancer by blocking the ubiquitination of S100A9. Cancer Gene Ther. 2022;29:1731–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding L, Wang R, Zheng Q, Shen D, Wang H, Lu Z, et al. circPDE5A regulates prostate cancer metastasis via controlling WTAP-dependent N6-methyladenisine methylation of EIF3C mRNA. J Exp Clin Cancer Res. 2022;41:187.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Zheng XD, Lin CM, Min J, Hu S, Hu Y, et al. Advancement and properties of circular RNAs in prostate cancer: an emerging and compelling frontier for discovering. Int J Biol Sci. 2021;17:651–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo G-C, Chen L, Fang J, Yan Z-J. Hsa_circ_0030586 promotes epithelial–mesenchymal transition in prostate cancer via PI3K-AKT signaling. Bioengineered. 2021;12:11089–107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao S, Zhang W, Yang F, Guo Y, Wang H, Wu Y, et al. Hsa_circ_0004296 inhibits metastasis of prostate cancer by interacting with EIF4A3 to prevent nuclear export of ETS1 mRNA. J Exp Clin Cancer Res. 2021;40:336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Z, Zhou L, Zhang C, Xu J. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett. 2020;468:88–101.

    Article  PubMed  Google Scholar 

  • Yu YZ, Lv DJ, Wang C, Song XL, Xie T, Wang T, et al. Hsa_circ_0003258 promotes prostate cancer metastasis by complexing with IGF2BP3 and sponging miR-653-5p. Mol Cancer. 2022;21:12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Song Y, Hou T, Li X, Cheng L, Li Y, et al. Circ_0004087 interaction with SND1 promotes docetaxel resistance in prostate cancer by boosting the mitosis error correction mechanism. J Exp Clin Cancer Res. 2022;41:194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Guo S, Wang S, Zhang Y, Chen H, Wang Y, et al. EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res. 2022;82:831–45.

    Article  PubMed  Google Scholar 

  • Lim MCJ, Baird AM, Greene J, Mcnevin C, Ronan K, Podlesniy P, et al. hsa_circ_0001275 is one of a number of circRNAs dysregulated in enzalutamide resistant prostate cancer and confers enzalutamide resistance in vitro. Cancers. 2021;13:6383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Song Y, Cheng L, Chen L, Liu B, Lu D, et al. CircCEMIP promotes anoikis-resistance by enhancing protective autophagy in prostate cancer cells. J Exp Clin Cancer Res. 2022;41:188.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu J, Zhong C, Luo J, Shu F, Lv D, Liu Z, et al. HnRNP-L-regulated circCSPP1/miR-520h/EGR1 axis modulates autophagy and promotes progression in prostate cancer. Mol Ther Nucleic Acids. 2021;26:927–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, Pan Y, Fang Y, Zhang J, Xie M, Yang F, et al. The biogenesis and functions of piRNAs in human diseases. Mol Ther Nucleic Acids. 2020;21:108–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Dou M, Song X, Dong Y, Liu S, Liu H, et al. The emerging role of the piRNA/piwi complex in cancer. Mol Cancer. 2019;18:123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan L, Mai D, Zhang B, Jiang X, Zhang J, Bai R, et al. PIWI-interacting RNA-36712 restrains breast cancer progression and chemoresistance by interaction with SEPW1 pseudogene SEPW1P RNA. Mol Cancer. 2019;18:9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ou B, Liu Y, Gao Z, Xu J, Yan Y, Li Y, et al. Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer via FTO-mediated m6A demethylation. Cell Death Dis. 2022;13:905.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Meng X, Li D, Han X. piR-001773 and piR-017184 promote prostate cancer progression by interacting with PCDH9. Cell Signal. 2020;76:109780.

    Article  PubMed  Google Scholar 

  • Dietrich D, Meller S, Uhl B, Ralla B, Stephan C, Jung K, et al. Nucleic acid-based tissue biomarkers of urologic malignancies. Crit Rev Clin Lab Sci. 2014;51:173–99.

    Article  PubMed  Google Scholar 

  • Markert L, Holdmann J, Klinger C, Kaufmann M, Schork K, Turewicz M, et al. Small RNAs as biomarkers to differentiate benign and malign prostate diseases: an alternative for transrectal punch biopsy of the prostate? PLoS ONE. 2021;16:e0247930.

    Article  PubMed  PubMed Central  Google Scholar 

  • Otandault A, Anker P, Al Amir Dache Z, Guillaumon V, Meddeb R, Pastor B, et al. Recent advances in circulating nucleic acids in oncology. Ann Oncol. 2019;30:374–84.

    Article  PubMed  Google Scholar 

  • Berchuck JE, Baca SC, Mcclure HM, Korthauer K, Tsai HK, Nuzzo PV, et al. Detecting neuroendocrine prostate cancer through tissue-informed cell-free DNA methylation analysis. Clin Cancer Res. 2022;28:928–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan H, Bu P. Non-coding RNA in cancer. Essays Biochem. 2021;65:625–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickl JM, Heckmann D, Ratz L, Klauck SM, Sültmann H. Novel RNA markers in prostate cancer: functional considerations and clinical translation. Biomed Res Int. 2014;2014:765207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romano G, Veneziano D, Acunzo M, Croce CM. Small non-coding RNA and cancer. Carcinogenesis. 2017;38:485–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Babayan A, Pantel K. Advances in liquid biopsy approaches for early detection and monitoring of cancer. Genome Med. 2018;10:21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao SG, Sperger JM, Schehr JL, Mckay RR, Emamekhoo H, Singh A, et al. A clinical-grade liquid biomarker detects neuroendocrine differentiation in prostate cancer. J Clin Investig. 2022;132:e161858.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin BB, Lei HQ, Xiong HY, Fu X, Shi F, Yang XW, et al. MicroRNA-regulated transcriptome analysis identifies four major subtypes with prognostic and therapeutic implications in prostate cancer. Comput Struct Biotechnol J. 2021;19:4941–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabris L, Ceder Y, Chinnaiyan AM, Jenster GW, Sorensen KD, Tomlins S, et al. The potential of microRNAs as prostate cancer biomarkers. Eur Urol. 2016;70:312–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moustafa AA, Ziada M, Elshaikh A, Datta A, Kim H, Moroz K, et al. Identification of microRNA signature and potential pathway targets in prostate cancer. Exp Biol Med. 2017;242:536–46.

    Article  Google Scholar 

  • Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 2008;68:6162–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostano P, Mello-Grand M, Sesia D, Gregnanin I, Peraldo-Neia C, Guana F, et al. Gene expression signature predictive of neuroendocrine transformation in prostate adenocarcinoma. Int J Mol Sci. 2020;21:1078.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alahari SV, Eastlack SC, Alahari SK. Role of long noncoding RNAs in neoplasia: special emphasis on prostate cancer. Int Rev Cell Mol Biol. 2016;324:229–54.

    Article  PubMed  Google Scholar 

  • Mouraviev V, Lee B, Patel V, Albala D, Johansen TE, Partin A, et al. Clinical prospects of long noncoding RNAs as novel biomarkers and therapeutic targets in prostate cancer. Prostate Cancer Prostatic Dis. 2016;19:14–20.

    Article  PubMed  Google Scholar 

  • Martens-Uzunova ES, Böttcher R, Croce CM, Jenster G, Visakorpi T, Calin GA. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 2014;65:1140–51.

    Article  PubMed  Google Scholar 

  • Li P, Shi Y, Guo M, Xu H, Zhan M, Wang Z, et al. MAFG-AS1 is a prognostic biomarker and facilitates prostate cancer progression. Front Oncol. 2022;12:856580.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhou R, Sun B, Jin X, Chen Y, Xu X. Prognostic significance of lncRNA AP004608.1 in prostate cancer. Front Oncol. 2022;12:1017635.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Hu J, Hu X, Zhao C, Mo M, Zu X, et al. LncRNA SNHG9 is a prognostic biomarker and correlated with immune infiltrates in prostate cancer. Transl Androl Urol. 2021;10:215–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramnarine VR, Alshalalfa M, Mo F, Nabavi N, Erho N, Takhar M, et al. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. Gigascience. 2018;7:giy050.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crea F, Venalainen E, Ci X, Cheng H, Pikor L, Parolia A, et al. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics. 2016;8:721–31.

    Article  PubMed  Google Scholar 

  • Zhang Z, Yang T, Xiao J. Circular RNAs: promising biomarkers for human diseases. EBioMedicine. 2018;34:267–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang J, Qi J, Dong X, Luo J. Perspectives on circular RNAs as prostate cancer biomarkers. Front Cell Dev Biol. 2020;8:594992.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greene J, Baird AM, Lim M, Flynn J, Mcnevin C, Brady L, et al. Differential CircRNA expression signatures may serve as potential novel biomarkers in prostate cancer. Front Cell Dev Biol. 2021;9:605686.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell. 2019;176:869–81.e13.

    Article  PubMed  PubMed Central  Google Scholar 

  • He T, Tao W, Zhang LL, Wang BY, Li K, Lu HM, et al. CircSCAF8 promotes growth and metastasis of prostate cancer through the circSCAF8-miR-140-3p/miR-335-LIF pathway. Cell Death Dis. 2022;13:517.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li T, Sun X, Chen L. Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker. J Cell Biochem. 2020;121:2118–26.

    Article  PubMed  Google Scholar 

  • Hansen EB, Fredsøe J, Okholm TLH, Ulhøi BP, Klingenberg S, Jensen JB, et al. The transcriptional landscape and biomarker potential of circular RNAs in prostate cancer. Genome Med. 2022;14:8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao W, Luo ZH, He YD, Wang BY, Xia TL, Deng WM, et al. Plasma extracellular vesicle circRNA signature and resistance to abiraterone in metastatic castration-resistant prostate cancer. Br J cancer. 2023;128:1320–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia DD, Jiang H, Zhang YF, Zhang Y, Qian LL, Zhang YF. The regulatory function of piRNA/PIWI complex in cancer and other human diseases: the role of DNA methylation. Int J Biol Sci. 2022;18:3358–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanusek K, Poletajew S, Kryst P, Piekiełko-Witkowska A, Bogusławska J. piRNAs and PIWI proteins as diagnostic and prognostic markers of genitourinary cancers. Biomolecules. 2022;12:186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng Q, Chiu PK, Wong CY, Cheng CK, Teoh JY, Ng CF. Identification of piRNA targets in urinary extracellular vesicles for the diagnosis of prostate cancer. Diagnostics. 2021;11:1828.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo YL, Liang Y, Zhang JT, Hao YY, Li ML, Wen ZN, et al. Transcriptome analysis identifies Piwi-interacting RNAs as prognostic markers for recurrence of prostate cancer. Front Genet. 2019;10:1018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ge R, Wang Z, Montironi R, Jiang Z, Cheng M, Santoni M, et al. Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann Oncol. 2020;31:470–79.

    Article  PubMed  Google Scholar 

  • Yan Z, Xiao Y, Chen Y, Luo G. Screening and identification of epithelial-to-mesenchymal transition-related circRNA and miRNA in prostate cancer. Pathol Res Pr. 2020;216:152784.

    Article  Google Scholar 

  • Malla B, Zaugg K, Vassella E, Aebersold DM, Dal Pra A. Exosomes and exosomal microRNAs in prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2017;98:982–95.

    Article  PubMed  Google Scholar 

  • Konoshenko M, Laktionov P. The miRNAs involved in prostate cancer chemotherapy response as chemoresistance and chemosensitivity predictors. Andrology. 2022;10:51–71.

    Article  PubMed  Google Scholar 

  • Juracek J, Madrzyk M, Stanik M, Slaby O. Urinary microRNAs and their significance in prostate cancer diagnosis: a 5-year update. Cancers. 2022;14:3157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Similar news
    News Archive
    • Claudio Bravo Camus
      Claudio Bravo Camus
      Claudio Bravo Camus: Who was the hyperrealist painter and why is he being remembered?
      7 Nov 2019
      3
    • Suzy Cato
      Suzy Cato
      We don’t have enough celebrities for all these reality shows
      9 May 2021
      5
    • NET Core
      .NET Core
      Microsoft emits .NET Core 3.0, C# 8.0, Visual Studio 2019 16.3, and more at e-conference
      24 Sep 2019
      1
    • Kanye West
      Kanye West
      Sharon Osbourne Explains Why Ozzy Turned Down Kanye’s Sample Request
      18 Feb 2024
      28
    • Heathrow Airport
      Heathrow Airport
      OAG: Kuala Lumpur tops most connected airport in Asia Pacific
      24 Sep 2023
      11
    • Pokemon Unite
      Pokemon Unite
      Pokemon Unite: Zeraora Builds | Game Rant
      21 Jul 2021
      4
    This week's most popular news